Low-Frequency Variability in a Turbulent Baroclinic Jet: Eddy–Mean Flow Interactions in a Two-Level Model
نویسندگان
چکیده
The origin of low-frequency variability in the midlatitude jet is investigated using a two-level baroclinic channel model. The model state fields are separated into slow and fast components using intermediate timescale averaging. In the equation for the fast variables the nonlinear wave–wave interactions are parameterized as a stochastic excitation. The slowly varying ensemble mean eddy fluxes obtained from the resulting stochastic turbulence model are coupled with the slowly varying mean flow dynamics. This forms a coupled set of deterministic equations on the slow time scale that governs the dynamics of the eddy–mean flow interaction. The equilibria of this coupled system are found as a function of the excitation strength, which controls the level of turbulence. At low levels of turbulence the equilibrated flow with zonally symmetric mean forcing remains zonally symmetric, but as excitation increases it undergoes zonal symmetry-breaking bifurcations. Time-dependent flows arising from these bifurcations take the form of westward-propagating wavelike structures resembling blocking patterns. Features of these waves are characteristic of blocking in both observations and atmospheric general circulation model simulations including retrogression, eddy variance concentrated upstream of the waves, and eddy momentum flux forcing the waves.
منابع مشابه
Annular Variability and Eddy–Zonal Flow Interactions in a Simplified Atmospheric GCM. Part I: Characterization of High- and Low-Frequency Behavior
Experiments have been performed using a simplified, Newtonian forced, global circulation model to investigate how variability of the tropospheric jet can be characterized by examining the combined fluctuations of the two leading modes of annular variability. Eddy forcing of this variability is analyzed in the phase space of the leading modes using the vertically integrated momentum budget. The ...
متن کاملBimodal Behavior in the Zonal Mean Flow of a Baroclinic β-Channel Model
The dynamical origin of midlatitude zonal-jet variability is examined in a thermally forced, quasi-geostrophic, two-layer channel model on a β-plane. The model’s behavior is studied as a function of the bottom-friction strength. Two distinct zonal-flow states exist at realistic, low and intermediate values of the bottom drag; these two states are maintained by the eddies and differ mainly in te...
متن کاملAnnular Mode–Like Variation in a Multilayer Quasigeostrophic Model
Eddy–zonal flow interactions in the annular modes are investigated in this study using a modified beta-plane multilayer quasigeostrophic (QG) channel model. This study shows the different response of highand lowphase-speed (frequency) eddies to the zonal wind anomalies and suggests a baroclinic mechanism through which the two eddies work symbiotically maintaining the positive eddy feedback in t...
متن کاملA New Model for Prediction of Heat Eddy Diffusivity in Pipe Expansion Turbulent Flows
A new model to calculate heat eddy diffusivity in separating and reattaching flows based on modification of constant Prt is proposed. This modification is made using an empirical correlation between maximum Nusselt number and entrance Reynolds number. The model includes both the simplicity of Prt=0.9 assumption and the accuracy of two-equation heat-transfer models. Furthermore, an appropriate l...
متن کاملMixed Large-Eddy Simulation Model for Turbulent Flows across Tube Bundles Using Parallel Coupled Multiblock NS Solver
In this study, turbulent flow around a tube bundle in non-orthogonal grid is simulated using the Large Eddy Simulation (LES) technique and parallelization of fully coupled Navier – Stokes (NS) equations. To model the small eddies, the Smagorinsky and a mixed model was used. This model represents the effect of dissipation and the grid-scale and subgrid-scale interactions. The fully coupled NS eq...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
دوره شماره
صفحات -
تاریخ انتشار 2009